

Convolutional Neural Network for Audio Effects Classification

Christopher Relyea

DS 340

Final Project

Background

- Audio effects transform a "dry" signal
- Four primary examples are Reverb,
 Distortion, Chorus, and Delay

• Problem Statement

 I want to design a model that can recognize which effects have been applied to an audio signal and assign labels

• Why?

- Music classification
- Could be a useful tool for producers
- Apply existing knowledge to this class

Audio Effects

Source

Reverb

"Wide" or "roomy" sound

Chorus

"Shaky" or "warbly" effect

Distortion

Crunchy and low-quality

Delay

Echo effect

Audio Effects (cont.)

Reverb + Delay + Chorus

(,)

Distortion + Chorus

Challenge: Data Collection

- Source data from BandLab Sounds
 - 40 of each dry instrument guitar, keys, bass, voice
 - 96 "misc"
- Need to find a way to render each with effects (DAW)
 - · Would take quite a long time by hand
- Found a DAW, Reaper, which supports Python scripting
- Rendered each audio file with all 16 combinations of distortion, chorus, delay, reverb in that order
- Effects plugins
- Total of 4112 audio samples to train with

Methods (Audio Representations) and Fun Fact

- WAV files lossless audio
 - A bit too detailed
- Sample rate
 - 44.1 kHz? 22.05 kHz? What does it mean?
 - <u>Fun Fact</u> Nyquist Theorem, video recording, the origins of digital audio, 80 minutes on a CD
- Stereo vs. mono
- Duration and padding

2 * 2 * 3 * 3 * 5 * 5 * 7 * 7 = 44100

Methods: Mel Spectrograms

- Commonly used format for audio ML models
- Captures frequency change over time
- Like an image of the audio
 - Analogy: the colors of an image

Methods: Creating and Adjusting the Network

- Started with a 4-layer CNN based on class examples, PyTorch documentation, and Keras examples
- Adapted from image classifier and audio classifiers
- Tools: PyTorch, Librosa, Colab
- Audio parameters:
 - Mel spectrogram bin size
 - Duration
 - Number of channels
- Hyperparameters
 - Early stopping
 - Learning rate
 - Batch size
- Data augmentation
 - Time shifting

Results

```
Per-label Metrics:
Distortion: Precision: 0.9532, Recall: 0.8953, F1: 0.9233
Chorus: Precision: 0.5200, Recall: 0.7792, F1: 0.6237
Delay: Precision: 0.6055, Recall: 0.8987, F1: 0.7236
Reverb: Precision: 0.8778, Recall: 0.9841, F1: 0.9279
```

- This is about the best the model can get
- Reverb and Distortion learned easily, which makes sense (why?)
- Delay is not great, chorus is worse
- Best model: 5 layers, dropout, mel bins = 256, batch size = 32, SR = 22.05
 kHz, stereo audio, 75 epochs
- Better to use F1 than accuracy metric here. Why?

Conclusions

- It does not take much to recognize reverb and distortion, but delay and chorus are more subtle
- Future work
 - Consider real music production examples more
 - background noise and other instruments
 - More augmentations
 - Other representations raw WAVs?
 - Try to build a classifier for just chorus and delay
 - More effects

