
FXNet: Convolutional Neural
Network for Audio Effects

Classification
Christopher Relyea
Boston University
crelyea@bu.edu

ABSTRACT

This project explores the creation of a multi-label convolu-
tional neural network capable of identifying the presence of
four audio effects, reverb, delay, chorus, and distortion, ap-
plied to musical instrument recordings. To train the model,
over 4,000 audio samples were generated by applying all pos-
sible combinations of these effects to a diverse set of "dry"
instrument audio files. These processed samples were con-
verted to Mel spectrograms and used to train a CNN, which
was gradually improved through hyperparameter tuning, au-
dio representation experiments, and architecture changes. Re-
sults show high F1 scores for distortion and reverb, while
chorus and delay proved more challenging due to their pri-
marily temporal nature. The project highlights the effective-
ness of spectrogram-based CNNs for audio classification and
identifies key limitations in modeling time-domain effects.
Potential improvements include adopting temporal models
or raw waveform input to better capture subtle timing-based
modifications.

1. INTRODUCTION AND BACKGROUND

1.1 Audio Effects
“Audio effects” are several popular discrete signal process-

ing manipulations to modify a source music signal in ways
to create interesting sounds. This project will deal with four
such effects:

• Reverb – widens the sound, adds a long decay after the
sound has finished playing. Sounds like we’ve put the
instrument in a large room (or concert hall, or small
studio, etc. depending on parameters)

• Delay – adds an echo to the sound; the sound repeats
itself every x milliseconds, getting quieter each time
until inaudible

• Chorus – adds some depth to the signal by playing a
slightly displaced signal at the same time as the original.
Usually described as a swirly, dreamy effect

• Distortion – clips the waveform of audio so it is less
smooth/refined. Results in a sound that is aggressive,
gritty, maybe more “ugly”

In this project, I aim to design a multi-label classifier that
can recognize which of these four audio effects have been
applied to an original signal.

2. COLLECTION OF TRAINING DATA

2.1 Finding Samples
To train the model, I needed to source many WAV files of

musical instrument recordings that have been filtered through
any combination of the four audio effects. I decided that
the best way to create a large and accurately-labeled dataset
would be to source "dry" (no effects added) instrument sam-
ples of many kinds, and then generate my own processed
samples by applying effects to those unmodified audio files
using a music creation software. After some research, I found
that BandLab, a web-based music creation tool, provides
a free and comprehensive database of uncopyrighted mu-
sic samples meant to be manipulated in user-created songs.
These samples, referred to as "loops," present a large collec-
tion of genres and styles, and can be sorted by instrument
type in the online database.

In an effort to collect samples that represent a wide variety
of sound types, I decided to source loops from each of four
instrument types. I collected 40 samples each of guitar, voice,
keyboards, and drums. I added 97 "miscellaneous" samples
to this list to add more variety: these loops cover instruments
or sounds outside of the four previous categories.

2.2 Rendering Audio Effects
I then had to find a way to render each sample with all of

the audio effects I’d like to include in my classifier. Usually,
this is easily done using a Digital Audio Workstation (DAW)
and any number of audio effects "plugins" which can apply
one of these four effects to a signal. These plugins often
come included with a DAW, with an operating system, or can
be downloaded from the Internet (many of them are free to
use).

The aim was to take each of the 257 WAV files in my
raw data and render each using every possible combination
of the four effects types. The order in which effects are
applied matters, and the decided-upon "industry standard"
to produce the cleanest musical signals follows the order of
distortion, chorus, delay, reverb. In this order, any of the
four effects can be toggled on or off, so there are 24 = 16
possible combinations for each input signal. 257∗16 = 4112
processed files should be rendered.

It would take quite a long time to do this the traditional
way: dragging each sample into the DAW, adding the plugins
for a single combination of effects, and rendering the project
to another WAV file, following this process 16 times for each
of the 257 input files. In an effort to make this process much
faster, I discovered that a widely-used, lightweight DAW
called Reaper has built-in scripting support through a Python
library. I wrote a script that would, for each of the input
files, load that file into Reaper and render 16 output files,
each representing a new combination of effects. The output
filename includes a binary string that acts as the label for that
sample (ex. keys_9_0101.wav represents the tenth keyboard
sample rendered with only chorus and reverb). Reaper’s
automation capability was a great help in the data collection
process, and script completed its run in a few hours, likely
tens of times slower than the rendering would have taken by
hand.

For the effects themselves, each effect type made use of one
of two plugins representing that effect. For example, when
rendering a signal to use reverb, the script would randomly

1



choose one of two downloaded reverb plugins to load into
the DAW. Additionally, to ensure some variability and to
discourage the model from memorizing specific sounds or
patterns, the parameters of each plugin were randomized
on each use. When adding a delay plugin, for example, it
would be quite unhelpful for the model to use the same delay
speed in milliseconds for each use. By randomizing the
parameters, some generated samples have fast delays, while
some have slower ones. This not only combats overfitting to
the training set, but also considers how these effects are used
in the real world. Every recording artist or music producer
tweaks effects parameters to fit the musical genre, style, or
their personal preferences.

After the data collection was complete, I was left with
4112 labeled WAV files.

3. AUDIO REPRESENTATION AND PARAM-
ETERS

3.1 Mel Spectrograms
While a WAV file is the most complete representation

of an audio signal, they are quite large at higher sampling
rate, and thus will cause a slow training process. In many
code examples which use libraries like Keras or Pytorch, AI
designers have opted to use a Mel spectrogram to represent
an audio file.

Rather than encoding all of the sampling values of a raw
audio signal, a Mel spectrogram sorts the signal into existing
frequencies and investigates the change in these frequencies
over time. Mel spectrograms are commonly used in audio
machine learning applications, especially those involving
classification of an audio excerpt into a category or label.
Spectrograms can be displayed and interpreted as images, so
they are a natural fit for CNNs.

Every audio effect I am investigating makes some changes
to the frequency content or time content of an audio signal.
Figures 1-5 show spectrograms for a raw signal, then the
same signal rendered with each of the four effects.

The level of detail in a Mel spectrogram can be adjusted,
resulting in a larger vector representation as input to the
CNN. As detailed in my experimental process, I adjusted
the N_MELS parameter, which results in a more detailed
frequency content representation when increased, similar to
the resolution of an image.

3.2 Duration and Trimming
The lengths of audio clips in my training data range from

about three seconds to fourteen seconds, so it is important
to decide on an audio clip length that will produce the best
training results. My experiment results show an exploration
of different audio lengths to evaluate the impact on larger
input vectors on the success of the model.

Some clip lengths tested in my project are longer than the
shortest clips in my training data. To accommodate for this,
I used padding with empty values. For example, if the clip
length I decided to use was 4 seconds, clips shorter than this
would be filled in with 0s after the end of their audio signal,
to achieve a uniform clip length for all samples.

A final parameter included in this category is a toggleable
option to detect the onset of an audio signal. Every signal in

Figure 1: Mel Spectrogram: Dry Signal

Figure 2: Mel Spectrogram: Signal with Distortion

Figure 3: Mel Spectrogram: Signal with Chorus

Figure 4: Mel Spectrogram: Signal with Delay

2



Figure 5: Mel Spectrogram: Signal with Reverb

the data set, for the purpose of ease of use in a music creation
context, starts with some amount of silence. It would not
be useful to train a model using silent signals which do not
react at all to an audio effect. To accommodate this, I used
Librosa’s (my audio library of choice, as explained in Section
5) "trim" method, which automatically trims the silence off
of a signal so that the start of the file will be the start of
relevant audio. Again, if a signal is trimmed to shorter than
the desired clip length for training, padding will occur.

3.3 Number of Channels
Most music you will hear on a regular basis contains either

one or two channels of audio. "Mono" audio uses a single
channel, while "Stereo" audio delivers two signals simultane-
ously in the left and right channels.

While distortion and delay do not behave differently in a
stereo vs. a mono environment, chorus and reverb result in a
"widening" of sound that spreads a signal further out between
left and right channels.

Through experimentation, I will investigate the effect both
mono and stereo input audio have on the model’s success.

4. TOOLS AND SOURCES

4.1 Libraries
For the creation of the model and for training, I decided to

use the PyTorch library [4]. I had originally planned on using
Keras, but opted for PyTorch due to the lower-level control
allowed by the library, since I wanted the option to edit more
detailed elements of the training loop if necessary for my
unique use case. I had also originally meant to run training
on my local machine using a Nvidia GPU, and discovered
that Keras had discontinued support for CUDA connection,
making PyTorch a better option at that time (before opting
for cloud-based computing).

PyTorch comes with its own audio processing library, but
I opted for Librosa [2], another Python-based set of audio
tools, for a number of reasons: Librosa provides more control
over a larger set of audio processes, including pitch and time
shifting (relevant for data augmentation), the aforementioned
"trim" method, and a more detailed system for converting to
Mel spectrograms. I also discovered quickly that the docu-
mentation for Librosa is easier to work with and much more
extensive than Torch Audio, the PyTorch-based alternative.

4.2 Existing Code
I gathered inspiration and guidance from several code

sources. To get a handle on the Torch code structure and
an application to audio, I used an example provided by the
library: a speech command classifier ( [1]). While this exam-
ple uses raw WAV audio instead of spectrograms, it is a good
starting point to learn the basics of a machine learning library
I was not initially familiar with in a context parallel to my
project’s mission.

To design the CNN itself, I made use of notes from class
lectures as well as a GitHub repository defining a sound clas-
sification model in Keras ( [3]). The resources from DS340
allowed me to quickly prototype a basic neural network based
on image classification examples discussed in lecture, espe-
cially where network structure and hyperparameters are con-
cerned, and the GitHub example was a great help in adapting
the basic CNN structure for audio purposes.

5. RESULTS

5.1 Metrics Overview
As discussed previously, the following metrics for input

audio signals and their respective possible values were con-
sidered:

• Audio duration: 2-7 seconds

• Number of channels: 1, 2

• Number of Mel bins: 128, 160, 200, 256

In evaluating the success of the model, I determined that
the F1 metric, both for the system as a whole and for each
classified label (effect), would be more useful than accuracy.
If accuracy were used, it would have been quite low through-
out the design and redesign process for the network. This
is because accuracy is measured by the times the network
is entirely successful in classifying an audio sample. For
example, if a sample contains only chorus and reverb, but the
classifier guesses it contains chorus, reverb, and distortion,
the calculations for an accuracy metric would count this clas-
sification as a complete failure. This would not be useful for
determining how to design the system going forward. It will
be more useful to consider the F1 scores for each effect. If in
that case one effect is not as well recognized as the others by
this classifier, I can more easily target that label by making
informed adjustments to the data format or network design.

5.2 Initial Network
Using the existing code sources, I defined a four-layer con-

volutional neural network (Figure 6). Weights were scaled
from 32 to 128 across the four layers. No dropout or regu-
larization techniques were used in the initial design. Exact
network design can be viewed in the Colab notebook.

5.3 Testing Audio Parameters
I decided to systematically test every audio parameter, be-

ginning with duration. I used a basic early stopping system to
monitor validation loss, and tested the model using durations
of two to seven seconds, using default values for the rest of
the parameters (128 Mel bins, batch size 32, mono audio,

3



Table 1: F1 Scores by Duration and Effect

Duration (seconds) Overall F1 Distortion F1 Chorus F1 Delay F1 Reverb F1
2 0.7975 0.9728 0.5246 0.7516 0.9410
3 0.7974 0.9474 0.6214 0.6587 0.9623
4 0.7798 0.9577 0.4726 0.7157 0.9731
5 0.7874 0.9592 0.5125 0.7476 0.9302
6 0.8018 0.6532 0.6237 0.6842 0.9462
7 0.7222 0.9378 0.3889 0.6093 0.9528

Figure 6: Initial Network Design

22.05 kHz sampling rate). The results are reported in Table
1, including the overall F1 score and the per-label F1. The
learning rate was set at 0.001, and a batch size of 32 was
used.

From these results, I determined that the most effective
audio duration to use is three seconds (Table 1). While two
and six seconds did have higher overall F1 scores, the spread
of F1 scores between the individual effects are less consistent
than three seconds. I decided to prioritize a well-balanced
model.

Through testing of each Mel bin value (three attempts for
each size, reporting the average), I determined that better
results are produced when using 256 bins, which is twice
as detailed as the default value for that parameter (128, as
recommended by Librosa). There appears to be a positive
relationship between level of detail in the Mel spectrograms
and the success of the model (Table 2).

5.4 Network Redesigns
In beginning to test every audio parameter, I noticed that

the validation loss for the network was never reaching values
below 0.4. Since training loss was just slightly lower than 0.4
at this point, the model appeared to be underfitting. To intro-
duce some complexity, I added a fifth layer to the network. I
turned off the early stopping parameter, and observed a train-
ing loss that could reach much lower values, while validation
loss would eventually diverge at a point where early stopping
would kick in (Figure 7).

In terms of per-label metrics up to this point, it is clear
that the model is easily learning how to recognize reverb
and distortion, with F1 values well above 0.90. Chorus and
delay are proving to be a bit more difficult. At this point, I
switched the input data to stereo audio. To accommodate the
increasingly complicated data (two input channels instead of
one) I added dropout - 0.2 for the input layer, and 0.5 before

Figure 7: Validation and Training Loss, Five-Layer Network

Figure 8: Validation and Training Loss, Five-Layer Network
with Dropout

the final activation. The results present a model that presents
marginally better performance for chorus and delay (Figure
8).

To begin experimenting with hyperparameter adjustment,
I trained my model using batch sizes of 16, 32, and 64. The
F1 results revealed that batches of size 32 yield both the most
correct and most consistent results across all effects: Overall
F1 was the highest with 32-sized batches, and every effect
was best recognized at this level as well.

I decided that the next course of action should be to con-
tinue with this dropout model which did not seem to overfit
as much, and experiment with hyperparameter adjustment.
In my initial network design, I determined that, when cou-
pled with the most ideal audio parameters (256 Mel bins, 3
seconds, stereo audio), a batch size of 32 yielded the best F1
results. So, I continued to experiment with different early
stopping setups on the 5-layer model with 0.5 dropout. With
a patience of 15, I tried out models that would respond to

4



Table 2: Mel Spectrogram Detail Experiments

Number of Mel Bins Overall F1 Distortion F1 Chorus F1 Delay F1 Reverb F1
128 0.784 0.527 0.510 0.684 0.9463
160 0.782 0.927 0.526 0.701 0.968
200 0.780 0.945 0.582 0.640 0.954
256 0.791 0.953 0.559 0.690 0.967

Table 3: Early Stopping Delta Experiments

Delta Value Epochs Trained Distortion F1 Chorus F1 Delay F1 Reverb F1
0.1 22 0.931 0.612 0.641 0.891

0.01 45 0.937 0.582 0.684 0.935
0.001 41 0.955 0.489 0.655 0.937

validation loss deltas of 0.1, 0.01, and 0.001. Per-label per-
formance is reported in Table 3.

I will concede that there is a possible error in my early
stopping configuration for which I did not have the time to
fix, as after these experiments I decided to turn off the setting
received conflicting results when training for concrete epoch
numbers higher than the points where early stopping was
activated. 70 epochs seems to yield the best performance,
with Overall F1 = 0.799, Distortion = 0.923, Chorus = 0.624,
Delay = 0.724, Reverb = 0.928.

5.5 Augmentation
In an attempt to help the model learn to better recognize de-

lay and chorus, I decided to increase some data augmentation
in the training set. This is a similar process to augmenting an
image data set by shifting, blurring, or cropping pieces from
the training data. In the audio space, two common subtle
transformations that can help a model more easily learn and
generalize outside of a training set are time and pitch shifting.
I decided to try some basic experiments with time shifting
samples in the training set, making some samples slightly
slower or faster at random.

For the first experiment, 30% of the training samples were
slightly time-shifted, and the 5-layer model trained for 70
epochs. The model did not show significant improvement in
reverb, distortion or delay, and actually reported a significant
decrease in chorus performance, with an F1 score of 0.302.
In a follow-up attempt, the rate of augmentation was reduced
to 20%, and the model trained for 150 epochs. The success
of this model was in line with earlier experiments, with F1
scores for distortion, chorus, delay, and reverb at 0.936, 0.629,
0.668, and 0.958 respectively. It seems that this type of
augmentation did not provide a useful improvement to the
model.

6. ANALYSIS
Based on the performance of my model, it is clear that

the distortion and reverb effects are quite easily recognized
without much need for network redesigns or optimization of
audio format or hyperparameters. However, there is more
work to be done to improve the model’s recognition of chorus
and delay.

This is likely due to the fact that distortion and reverb
are more frequency-based than chorus and delay, which are

largely time-based. As mentioned earlier, distortion and re-
verb alter the frequency content of the signal, distortion by
"clipping" the waveform of the sound and reverb by adding
frequencies to the signal to account for those which resonate
more heavily in a large physical space. By contrast, chorus
and delay manipulate the signal in the time domain by adding
delayed copies of the original signal. In fact, chorus and
delay are essentially the same effect: delay adds an "echo"
of the signal (or several of them) usually around 50-500ms
after the original, while chorus is just a much faster delay,
usually 1-30ms, for the purpose of "thickening" the sound
rather than adding a clear echo. If we consider chorus and
delay to be two different intensity levels of the same effect
rather than two distinct effects, it makes sense that my model
would have roughly the same level of difficulty learning to
accurately place both labels.

Additionally, the audio representation I decided to use for
my model, a Mel spectrogram, is primarily concerned with
the frequency content of a signal. While these spectrograms
do consider how frequencies change over time, the way they
cluster frequencies into time "chunks" does not prioritize
short-term timing details characteristic of chorus and delay.
To improve the model’s ability to recognize these effects, it
may be worthwhile to change from using Mel spectrograms
as input to raw WAV files. This would, however, require a
much larger input vector and more detailed network, since
even at a downsampled 22.05 kHz a one-second audio clip
used as input would be represented as a vector of 22050
floats.

7. CONCLUSIONS AND FUTURE WORK
This paper presents FXNet, a convolutional neural network

that is trained to classify common audio effects—reverb, de-
lay, chorus, and distortion—applied to musical instrument
recordings. Using synthesized audio samples, the model was
trained on Mel spectrogram representations and exhaustively
tested with audio parameter changes, network architecture,
and training procedures.

Results indicate that FXNet performs very well at detect-
ing reverb and distortion, with F1 values well above 0.90,
while chorus and delay classification remains problematic. It
is likely that the reason these effects are difficult to recognize
is that they have a time-domain characteristic which is not
adequately represented by frequency-focused Mel spectro-

5



grams.
Several experiments were conducted to adjust input audio

length, resolution of spectrogram, and network depth, and to
integrate data augmentation. Albeit changes in spectrogram
hyperparameters and depth of the network yielded modest
gains, data augmentation by pitch and time shifts did not
enhance performance considerably for more difficult labels.

These findings point to two main directions of future en-
hancement. Firstly, as input the unprocessed waveform data
would better capture the nuances of chorus and delay but
at a gargantuan increase in input dimensionality and CNN
complexity. Secondly, employing hybrid or temporal models,
such as CNN-RNN models or transformers, could provide
more context for short-term timing variations.

Overall, FXNet illustrates the power of convolutional mod-
els for effect classification and highlights the limitation of
spectral representations for time-based audio features. Future

work will involve combining other data representations and
architectures to close the performance gap between effect
classes.

REFERENCES

[1] Bamblebam. Audio classification and regression using pytorch.
Accessed: 2025-04-28. [Online]. Available:
https://bamblebam.medium.com/audio-classification-and-regression-
using-pytorch-48db77b3a5ec

[2] B. McFee et al. Librosa documentation. Accessed: 2025-04-28.
[Online]. Available: https://librosa.org/doc/latest/index.html

[3] O. Medhat. Sound classification with mel-spectrogram. GitHub
repository, Accessed: 2025-04-28. [Online]. Available:
https://github.com/OmarMedhat22/Sound-Classification-Mel-
Spectrogram/blob/master/mel%20spectrogram.ipynb

[4] P. Team. Pytorch documentation. Accessed: 2025-04-28. [Online].
Available: https://pytorch.org/docs/stable/index.html

6

https://bamblebam.medium.com/audio-classification-and-regression-using-pytorch-48db77b3a5ec
https://bamblebam.medium.com/audio-classification-and-regression-using-pytorch-48db77b3a5ec
https://librosa.org/doc/latest/index.html
https://github.com/OmarMedhat22/Sound-Classification-Mel-Spectrogram/blob/master/mel%20spectrogram.ipynb
https://github.com/OmarMedhat22/Sound-Classification-Mel-Spectrogram/blob/master/mel%20spectrogram.ipynb
https://pytorch.org/docs/stable/index.html

	Introduction and Background
	Audio Effects

	Collection of Training Data
	Finding Samples
	Rendering Audio Effects

	Audio Representation and Parameters
	Mel Spectrograms
	Duration and Trimming
	Number of Channels

	Tools and Sources
	Libraries
	Existing Code

	Results
	Metrics Overview
	Initial Network
	Testing Audio Parameters
	Network Redesigns
	Augmentation

	Analysis
	Conclusions and Future Work

