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Abstract 
 

This project explores the development of ALF (All-Purpose Lo-fi Facilitator), an audio effects plug-in designed 

to emulate the aesthetic of lo-fi music through various signal processing techniques. Implemented using the 

JUCE framework in C++, the plug-in incorporates features such as downsampling, bit depth reduction, low-pass 

filtering, and the addition of vinyl noise to degrade and transform clean audio signals. The project aims to balance 

computational efficiency and auditory authenticity, introducing a novel randomization-based downsampling 

algorithm. This approach enhances performance while maintaining the "rough" sonic qualities characteristic of 

lo-fi aesthetics. Additionally, the plug-in allows extensive user control over parameters, enabling customized 

audio outputs. Future developments may include advanced modulation options, tape saturation emulation, and a 

preset system for greater usability. The project showcases the intersection of digital signal processing principles 

and artistic creativity in modern audio production. 

 
1. Introduction 
 

1.1 What is Lo-Fi? 

 

The rise of the ‘lo-fi’ (short for ‘low-fidelity’) musical style, defined by a poor sound quality 

(intentional or not) and, more so today, a nostalgia for physical formats past their moment of 

marketplace dominance, has had a profound impact on the world of music both popular and 

esoteric since the emergence of the genre in the late-twentieth century. Modern musicologists 

trace the beginnings of the lo-fi craze to The Beach Boy’s twelfth album Smiley Smile with its 

purposeful distortion of cassette sounds or inclusion of “tape hiss” noise in the final mix [1]. The 

music-consuming public would, over the following decades, become increasingly fascinated with 

sounds that were purposely not up to the highest of quality standards. In conjunction with the 

explosive re-emergence of LP record popularity, music released digitally today and most often 

listened to on a smartphone but made to sound like it was intended for older formats finds 

continued critical and popular success.  

 

 
Figure 1: “Lofi Girl” 

 

Paul McCartney’s eponymous 1970 solo debut, entirely recorded in his own home, is another 

notable example which asserts itself as an early manifestation of the soon-to-be popular style of 

“do-it-yourself” music, now closely associated with lo-fi. Experimental American singer and 

songwriter Beck’s smash hit “Loser” from 1994’s Mellow Gold, also recorded in the musician’s 



home, as well as similar songs and artists made the low-quality, “dirty” sound increasingly popular 

[2]. In more recent years, some of the most acclaimed “indie” musicians claim to have recorded 

their most streamed tracks with only the low-budget equipment they had available before their 

respective rises to fame. Music recorded and produced in the absence of professional studio 

equipment is marked by the resulting sonic imperfections that audiences have come to find 

intimate and alluring. There is also the rising Internet popularity of the term. Lofi Girl, a popular 

livestreaming content creator, broadcasts uninterrupted streams of modern lo-fi tracks and has 

totaled over 2.1 billion views in its channel lifetime of just over nine years. The animated character 

featured in the unchanging looping visual which accompanies every stream (Figure 1) is now 

instantly recognizable to a generation of web-surfers. 

 
1.2 Project 

 

I’ve aimed to identify the digital signal processing techniques and psychoacoustical 

underpinnings that can be leveraged to create an audio plug-in to process clean audio for 

degradation and modification to emulate the characteristic lo-fi sound. The desired result is a 

JUCE-based VST3 and AU plug-in I’ve named ALF (All-Purpose Lo-fi Facilitator) that 

functions with most commercial digital audio workstations and allows the user the freedom to 

control several parameters to tweak the output lo-fi sound signal to their liking. 

 

2. Definition of Tasks 

 

2.1 Bitcrushing 

 

“Bitcrushing”, a type of audio distortion, is a catch-all term for several possible manipulations of 

a source audio signal that result in output perceived as less refined or of a lower quality. 

Assuming little previous signal processing knowledge, I will describe the mathematical basis for 

the two most common bitcrushing techniques: downsampling and bit depth reduction. Either or 

both methods are typically used in commercial bitcrushing software plug-ins or hardware effects 

pedals. 

 

2.2 Downsampling 

 

Let’s start from the foundations of digital audio themselves. Sound in its natural form exists as a 

continuous signal. When this signal is recorded and digitized it is periodically sampled resulting 

in the digital representation of audio as, simply, a list of values (samples) from which a 

reconstructed digital waveform can be produced (Figure 2, taken from The Complete Beginner’s 

Guide to Audio Plugin Development by Matthijs Hollemans [3]). 
 

The closeness of this digital representation to the continuous audio signal depends on the sample 

rate we have chosen for capturing the audio signal. Common high rates include 98 kilohertz, 

usually reserved for professional audio production and mastering, 48 kilohertz, used often for 

audio signals in the higher end of consumer video (movies, TV shows, etc.) and 44.1 kilohertz, 

the standard rate for both music streaming and CDs. 



 
Figure 2: The digitization of an audio signal 

 

Downsampling, also known as sample rate decimation, seeks to decrease the sampling rate of an 

audio signal to a lower value, resulting in a signal further in accuracy from the source and 

audibly lower in quality. The sound produced from downsampling a 44.1kHz signal just slightly 

to 40kHz for example, will result in small artifacts of distortion, creating a sound that it “rough 

around the edges” and thus sonically in line with lo-fi aesthetics. 

 

2.3 Bit Depth Reduction 

 

Continuing the discussion of sampling theory, note that when we plot sampled values of an audio 

signal, they must be associated with some y-value. This value is a measure of the signal’s 

amplitude at a given instant. In the digital form, this is analogous to the signal’s intensity or 

volume, while in a continuous analog signal the y measure is most closely associated with the 

displacement of a speaker or microphone’s diaphragm in moving back and forth to produce the 

sound by vibrating the surrounding air. 

 

Audio Bit Depth Technologies/Formats 

8-bit NES, Game Boy, Commodore 64 SID Chip 

12-bit Akai MPC60 

16-bit Compact Disc (CD), MiniDisc, WAV, AIFF 

24-bit DVD-Audio, Blu-ray Audio 

32-bit (float) Most modern DAWs 
Figure 3: Various audio formats/devices and their associated bit depths [4] 

 

For our digital signal use, we need to consider the element of precision. We are first given that 

the y-values in an audio signal must lie between -1 and 1 (in keeping with the most conventional 

method of digital audio representation). A computer is not capable of representing an infinite 

number of distinct points in this range, so we must choose a level of precision which can be 

understood as a quantity of possible unique values between -1 and 1 that we can choose from in 

representing the y-values of our audio signal. At any given moment, the y-value of our signal is 

quantized, or rounded, to the nearest possible value of intensity. 

 

 
Figure 4: Quantization in a discrete signal  

 



This level of precision is in digital signal practice is known as bit depth. For example, 16-bit 

audio utilizes a quantity of possible intensity values that is equivalent to 216 = 65,536 spread 

across the range [-1,1]. 

 

Quantization error is defined as the difference between the theoretical, continuous values we are 

trying to plot on the y-axis and the rounded, digital version dependent on the bit depth. 

Especially at lower bit depths (8-bit and lower), the presence of quantization error can have an 

impact the audible output of our digital signal by way of unclean sound artifacts, white noise, or 

the general “computer-y” sound you might expect from and old video game console–an off-shoot 

genre of the lo-fi music craze known as chiptune, while not a focus of this project, is based on 

this use of extra-low bitrates. The lowering of target bit depths can be used to emulate older 

digital formats in their decreased capabilities for storing precise data and is thus fit for a lo-fi 

plug-in. 

 

2.4 Low-Pass Filters 

 

When downsampling is used in a signal processing pipeline, it is useful to have the option of 

filtering out high frequencies from the signal. The reason for this comes out of the Nyquist 

Theorem which states that, to digitally represent an analog signal in a way that is faithful to the 

source signal (meaning that, if we wanted to, we could convert our digital signal back into the 

continuous waveform exactly how it appeared before digital conversion), we must sample the 

signal at a rate greater than twice the highest frequency present in the signal. It can be difficult to 

develop intuition for why this condition must be true for faithful digital representation, but it 

comes down to the fact that if we try to capture a frequency too high in the eyes of the Nyquist 

theorem, we will misrepresent it as an incorrect low frequency that is not actually present in the 

signal to begin with. This effect is known as aliasing. Figure 5 shows the result of this 

phenomenon; a source sine wave of frequency 5Hz is correctly sampled by the red points and 

waveform at a rate of 15Hz, following the Nyquist theorem, correctly reconstructing the 5Hz 

signal (red), while the original signal is also incorrectly sampled at the blue points and a rate of 

4Hz that is too low. The result of sampling the 5Hz signal at a rate of 4Hz is a 1Hz sine wave, an 

incorrect representation of the original signal. 

 

 
Figure 5: The effects of aliasing 

 

If every signal can be represented as a sum of many frequencies (Fourier series), the job of a 

low-pass filter is to eliminate all frequencies greater a certain value, set by the user. A low-pass 

anti-aliasing filter can then be applied before downsampling to prevent the representation of 

new, non-existent frequencies. This is as easy as applying a low pass filter with a cutoff 

frequency determined by the downsampler’s target sampling rate, following the Nyquist 

Theorem. For example, if we resample a 44.1kHz signal at 22.05kHz, we should first apply a 

low-pass filter with a cutoff frequency of half the new rate, or 11.025kHZ. Any aliasing that 



would occur as a resulting of the downsampling process is eliminated since frequencies above 

the Nyquist limit will be eliminated before decimation occurs. 

2.5 Vinyl Noise 

 

One of the most popular ways for lo-fi artists to pay homage to physical formats of the past is to 

emulate the extra sounds outside of the music that occur because of a specific medium. One of 

the most recognizable noise profiles is that of a vinyl record and its player. By adding the low, 

subtle static of a phonograph player or the pops that occur when its needle encounters dust 

particles on the grooves of a record, any audio signal can be made to sound like it had been 

pressed onto a record and played through a turntable. 

 

Figure 6: ALF’s signal processing pipeline 

 

3. Methods and Implementation 

 

 
Figure 7: ALF plugin interface 

 

3.1 JUCE 

 

The JUCE framework, originally written in 2004 by developer Julian Storer, is a robust set of 

tools that allows for the efficient design of audio software. It is one of the most popular tools for 

the creation of audio effects or virtual instruments plugins mainly for its ease of cross-platform 

development (Windows, MacOS, Linux, iOS, Android supported) and support for all major 

audio plugin formats (VST, Audio Unit (AU), AAX, or a standalone application) that allows the 

developer to write plugins for nearly every DAW on the market. JUCE is relatively easy to jump 

into if you have some C++ experience and a basic understanding of digital audio, which is why 

as a novice audio programmer I’ve chosen to use it for this project.  



 

3.2 Bitcrusher Implementation 

 

I’ve decided to allow the user the option to apply downsampling, bit depth reduction, or both to 

the input signal as they see fit. This allows for a customizable pipeline (Figure 6). The 

downsampling factor and new bit depth as chosen by the user as well as the target sampling rate 

achieved by decimation (left of the slider in Figure 7) are clearly displayed in the GUI. 

 

3.2.1 ALF Downsampler 

 

In a DAW, an audio signal is processed in buffers. A buffer is a small chunk of audio data that the 

DAW processes and outputs, one chunk at a time, rather than handling the entire audio stream as 

a continuous flow. In JUCE programming, buffer sizes are set within the DAW then inherited by 

the plugin. Common sizes are 512 or 256 samples, but this size can be raised or lowered 

depending on the real-time needs of the audio pipeline or the capabilities of the machine (smaller 

buffer size requires more refreshing, creating more work for the CPU). 

 

The main loop of a JUCE plugin is represented as the method processBlock, which takes as input 

the current buffer of audio samples and a set of all incoming MIDI events detected during the 

buffer’s timespan (the latter is not important for this project). All of ALF’s audio signal 

manipulation code is implemented in the body of processBlock directly or in helper functions 

which are called there. 

 

It was mentioned earlier that the process of downsampling involves sampling the same 

analog/continuous signal at a lower rate. But what if we are only given the discrete values as they 

have already been collected and are not provided with the original signal to resample it? How 

can we decrease the sample rate of this discrete signal? It depends on our downsampling factor. 

DSP math splits the problem into two cases: 

 

Integer: If we want to decimate a signal by an integer factor n, we can simply use every nth 

sample as our downsampled signal, discarding the remaining signals. 

 

Non-Integer: If the factor is not an integer, the standard approach is to employ one of various 

interpolation techniques. For example, let  factor n = 1.5. If the first sample of our resulting 

decimated signal occurs at time t = 0, the second sample would fall between the second and third 

samples in the original discrete sample. We do not know what the sampled value of the 

continuous signal would be at that instant, so we “guess” what the sample would be based on 

samples we do know by applying the interpolation formula of our choice (linear, spline, 

Lagrange, etc.) [5]. 

 

How can we adapt these two solutions in JUCE? While the framework does include tools for 

resampling a discrete signal that incorporate interpolation as needed, I’ve decided to avoid these 

prewritten methods in favor my own downsampling algorithm for reasons to be explained later in 

this report. 

 



If the factor (which I also refer to as block size for how the new signal looks when plotted on a 

graph) is an integer, the solution is quite like the general approach as described above. Instead of 

eliminating samples outside of every nth value, though, every value that isn’t an nth value is set 

to the preceding nth value. No interpolation is required and we also don’t have to change the 

sampling rate within JUCE or delete any samples entirely. Thus, ALF’s integer-factor 

downsampler implementation works as follows: 

 
1) Decide on a downsampling factor n 

2) Loop through the input buffer and select every nth sample 

3) After every selected sample, select the next n-1 samples with the value of the nth sample 

4) Repeat until the end of the buffer 

 

When we apply this process to an incoming signal and take a close look at the sample values, it 

looks like this (n = 3): 

 

 
Figure 8: ALF downsampler applied to original signal, block size n = 3 

 

We’re now just left with the case of non-integer block sizes. It is at this point where I propose a 

novel downsampling algorithm that seems to exhibit greater computational efficiency than 

existing interpolation-based options. This algorithm, implemented in code as shown in Figure 9, 

works as follows: 

 
1) Decide on a (non-integer) downsampling factor n 

2) Determine and store nlower and nupper as the floor and ceiling values of n, respectively 

3) Beginning at t = 0, choose between nlower and nupper as the next block size according to a probability function 

which accounts for the closeness of n to its floor and ceiling values: 

a. 𝑃(𝑢𝑠𝑒 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 𝑛𝑙𝑜𝑤𝑒𝑟  ) =  𝑛𝑢𝑝𝑝𝑒𝑟 − 𝑛 

b. 𝑃(𝑢𝑠𝑒 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 𝑛𝑢𝑝𝑝𝑒𝑟  ) = 1 − 𝑃(𝑢𝑠𝑒 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 𝑛𝑙𝑜𝑤𝑒𝑟)  = 𝑛 − 𝑛𝑙𝑜𝑤𝑒𝑟  

c. For example, if n = 1.2, there is an 80% chance of selecting block size 1 and a 20% chance of 

selecting block size 2 for the next block 

4) Repeat until the end of the buffer 

 



 
Figure 9: C++/JUCE implementation of the randomization-based algorithm 

 

As described here, the algorithm seeks to downsample a signal by a non-integer factor by 

alternating between adjacent integer block sizes with a frequency determined by the decimal 

block size. Here’s how an output signal looks using this method, applied to the same region in 

Figure 8 but with a non-integer block size of 3.2. Most of the observed block sizes are 3, while 

block sizes of 4 samples occur around twice in every ten blocks. Block sizes in the modified 

signal are labeled. 

 

 
Figure 10: ALF downsampler applied to input signal, block size n = 3.2 

 

Arguments for Randomization Algorithm 

 

We can reason about the time complexity of this randomization-powered algorithm by first 

assuming that the random step (choosing the next block size) takes 𝑂(1) time. Since we must 

make this decision for each block in the buffer, the number of random processes is 
𝑁

𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒
 per 

buffer, where N is the total number of processed samples. Combining these steps together with 

the time to change the values of each sample in a block to be the first sample’s value, we arrive 

at an overall time complexity of 𝑂(
𝑁

𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒
 ), reducing to simply 𝑂(𝑁). 

 



This shows that the randomization algorithm is at least as good as typical methods for non-

integer downsampling that would employ the fastest interpolation algorithms (linear or cubic, for 

example) which also have complexities of 𝑂(𝑁). 

 

However, it can be reasoned that the new algorithm reduces the computational overhead required 

by other interpolation methods due to the simplicity of its calculations. Linear interpolation 

requires averaging adjacent samples, while the cubic alternative relies on solving polynomials. 

These operations must be employed for every signal in the output, which can create much more 

work for the processor especially with higher buffer sizes. Further, linear and cubic interpolation 

are only the fastest and simplest of the existing algorithms; others which place more of an 

emphasis on the quality of the reproduced signal are built around mathematical processes that are 

significantly more complex for a machine to perform. My proposed randomization algorithm 

requires no such complicated operations, only the randomized determination of the block size 

and the assignment of all sample values in that block to the value of the first sample. This keeps 

things quite simple for the machine. 

 

Of course, the trade-off for faster and simpler processing in a real-time audio context is clear 

when we consider the quality of the final output. Depending on the needs of a system, it may 

make more sense to sacrifice speed and simplicity in favor of accuracy or fidelity of the 

reconstructed audio signal, making those algorithms which prioritize performance unusable. 

Based on the definition and aesthetics of the lo-fi genre, though, high quality audio is likely not 

the goal for a plug-in such as this, and it may even be antithetical to the signature “rough” sound 

we’re trying to achieve. Thus, a fast algorithm that does not prioritize signal quality is favorable. 

 

Joining Downsampled Buffers 

 

When a buffer is split into blocks according to the downsampling factor, it is possible that this 

block size does not divide the buffer evenly. As such, it may occur that a buffer of size n must 

end in a block much smaller than the intended block size, or alternatively, that the next buffer 

must begin with a block that has a starting sample unusually far away from the value at the end 

of the last buffer. These mismatches can introduce discontinuities at the boundaries between 

buffers, resulting in audible artifacts such as high-frequency clicks or pops. 

To address this issue, I have implemented a smoothing mechanism for the first and last blocks of 

each buffer. The samples at the end of each buffer are modified so that they gradually approach a 

value of 0, while the samples at the start of each buffer begin at 0 and slowly grow towards their 

actual values. This ensures a seamless handoff between buffers and an elimination of the artifacts 

that may occur during these instants of transitions between buffers. Figure 11 shows the result of 

this fading strategy on a discrete signal. The source discrete signal (top) remains unmodified 

while the ALF-processed signal (bottom) allows for a smooth transition into the next buffer. 



 
Figure 11: Buffer transition fade out/in  

 

3.2.2 ALF Bit Depth Control 

 

In Designing Audio Effect Plugins in C++ by Will C. Pirkle, the author defines the following 

algorithm for bitcrushing using bit depth reduction (Figure 12), which maps y(n), sample values, 

to values in the new, smaller set of possible values dictated by the new quantization level (QL) 

using int to cast a decimal value to its integer floor [6]: 

 

 
Figure 12: Algorithm for bit depth-reduction bitcrushing 

 

This can easily be implemented in C++ JUCE code for the purposes of this plugin (Figure 13). 
 

 
 

Figure 13: ALF bit depth reduction implementation 



 

3.2.3 Filters 

 

As mentioned earlier, it is a good idea to apply a simple low pass filter to a signal prior to any 

downsampling to mitigate the effects of aliasing. JUCE provides an easy-to-use filter tool as part 

of its DSP library. To incorporate such a filter into our pipeline, it is only a matter of initializing 

the filter object and supplying the cutoff frequency, easily calculated as half of our target 

sampling rate (recalling the Nyquist theorem). 

 

I have supplied the reasoning for a pre-downsampling low pass filter, but have also included in 

ALF the option for the user to apply the same filter type after the downsampling and bit depth 

reduction steps. Where the pre-LP filter, as I’ve called it, is more necessary in its utility for 

eliminating unwanted, “fake” aliasing frequencies, the user’s choice to enable the post-LP option 

is more of a matter of preference. In both the downsampling and bit depth-lowering steps of the 

processing pipeline, there is an opportunity for high-frequency artifacts to emerge in the output 

signal. These can be heard as high-frequency "clicks," harshness, or a general sense of distortion, 

particularly in signals with a significant amount of high-frequency content. While these artifacts 

may not always be intrusive or noticeable, especially in certain styles of music or audio content, 

they can become problematic in more exposed or critical listening contexts. 

 

The post-LP filter serves to smooth out these potential high-frequency artifacts at the end of the 

pipeline should the user deem it necessary. This step helps ensure that any residual high-

frequency noise or distortion introduced during the downsampling or bit depth reduction stages 

is minimized, resulting in a cleaner and more polished signal. For simplicity, this filter’s cutoff 

value is set to be the same value as that of the pre-LP filter. ALF gives the user the option to use 

any combination of these two filters (or neither) as they see fit. 

 

3.2.4 Vinyl Noise 

 

To incorporate in JUCE the addition of vinyl noise on top of the ALF-processed signal as 

displayed in the pipeline (Figure 6), I first found a suitable royalty-free sound effect several 

minutes in length which includes light static and the popping of the turntable’s needle. It was 

then only a matter of loading the entire sample as a buffer into the plugin’s code and continually 

looping through this buffer, adding the value of every sample to the current sample being 

outputted from the processed signal after bitcrushing, bit depth alteration, and filtering (Figure 

14). The vinyl noise sample repeats indefinitely using a pointer that jumps back to the start of the 

buffer after reaching the end (the current position in the vinyl buffer is a global variable accessed 

within processBlock). 

 



 
Figure 14: Vinyl noise code 

 

3.2.5 Gain Modification 

 

To allow the user control over the gain level of the full, final processed signal after the finishing 

touch of vinyl noise has been added, I’ve employed JUCE’s built-in applyGain method, 

multiplying every sample in the buffer by a factor dictated by the state of the gain dial. 

 

 

4. Future Work/Planned Features 

 
4.2 Evaluation 

 

To make more concrete claims about the performance and output quality of the ALF plugin, it 

would be necessary to run tests in a controlled environment. Particularly, the load on the CPU 

could be compared between versions of ALF that use the proposed randomized block size 

approach or other types of interpolation for downsampling to get a better sense of the true merits 

of the algorithm. This could include a closer look at ALF’s memory behavior, the average time 

taken to process a buffer of audio samples, or a visualization of the output signal in the frequency 

domain. 

 

4.3 More Options for Modulation 

 

There are many more quirks of the lo-fi sound that could be added as controls in this plugin that 

would allow much more creativity to the user. Notably, audio recorded through a tape machine 

can exhibit a phenomenon known “tape saturation” which leads to an iconic warmth in the 

output signal. Similarly, music captured or played with deteriorated physical equipment might 

have a “wobbling” pitch variability or increased levels of distortion. Further work can be done to 

implement such features in ALF that would more closely align the plug-in’s capabilities with the 

classic lo-fi sound of dated physical music recording and playback.  

 

4.4 Enhanced Customization 
 

Commercial plug-ins almost always include a “presets” feature which allow the user to save a 

configuration they like for quick access in the future. JUCE does provide some built-in support 

for such elements making this a feasible future addition to the plug-in. 
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